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a b s t r a c t 

Hyperspectral image (HSI) denoising is a prevalent research topic in the remote sensing area. In general, 

HSIs are inevitably impaired by different types of noise during the data acquisition. To fully characterize 

the underlying structures of clean HSI and remove mixed noises, we introduce a novel HSI denoising 

method named total variation-regularized bilinear factorization (BFTV) model. Specifically, we first utilize 

the bilinear factorization term to explore the globally low-rank structure of the clean HSI and suppress a 

certain degree of Gaussian noise, so as to make BFTV free to the singular value decomposition. Then the 

l 1 -norm is applied to detect and separate the mixed sparse noise including impulse noise, deadlines, and 

stripes. Besides, the TV regularization is introduced to describe the locally piecewise smoothness property 

of the clean HSI both in spatial and spectral domains. To solve this optimization problem, we devise 

an effective algorithm based on the augmented Lagrange multiplier method. Numerical experiments on 

five different kinds of mixed noise scenarios and one real world data have tested and demonstrated the 

superior denoising power of the proposed BFTV model compared with three state-of-the-art low-rank- 

based approaches. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Hyperspectral images (HSIs) are originally collected by remote

ensors for electromagnetic spectrum at the identical locations.

ue to the broad spectral information of objects, HSIs have been

uccessfully applied in many different fields such as agriculture,

stronomy, military, etc. Among them, HSI denoising [1] has been

 prevalent research topic in the remote sensing area. Because in

he real-world environment, HSIs are inevitably impaired by dif-

erent kinds of noise such as Gaussian noise, impulse noise, dead-

ines, and stripes [2,3] due to various factors, e.g., photon shot ef-

ect, transmission error [4] . 

To date, there have been various typical HSI denoising tech-

iques, such as non-local means algorithm (NL-Means) [5] , block-

atching and 3D filtering algorithm (BM3D) [6] , K-SVD algorithm

7] and so on. To cope with the three dimensional hyperspec-

ral data, these traditional methods are directly processed band

y band or even pixel by pixel. However, these traditional denois-

ng methods are not always well-pleasing since both spectral and

patial structures cannot be well preserved simultaneously for the

SI restoration. To better restore the HSI data cube, the underly-

ng prior knowledge of the clean HSI should be taken into account.
∗ Corresponding author. 

E-mail address: yicongzhou@um.edu.mo (Y. Zhou). 

g

 

s  

ttps://doi.org/10.1016/j.sigpro.2020.107645 

165-1684/© 2020 Elsevier B.V. All rights reserved. 
or example, the clean HSI data cube has the low rank property,

ecause besides the spatial correlations among neighboring pixels

n HSIs, there are also existing high correlations among different

pectral bands. As a result, each spectral frame can be represented

y a linear combination of several other irrelevant frames. In this

ay, the clean HSI structure can be characterized and the com-

onent of mixture sparse noise is separated as well. For exam-

le, Zhang et al. proposed a HSI denoising method based on the

ow-rank matrix recovery (LRMR) model [2] . Considering the su-

eriority of the weighted nuclear norm [8] , Wu et al. [9] exploited

he weighted nuclear norm instead of the traditional nuclear norm

o investigate the high spectral correlation. Flowing this, the study

n [10] proposed a low-rank constraint-based HSI denoising meth-

ds. To further improve the approximation of the nuclear norm,

ie et al. [11] and Chen et al. [3] developed the weighted schat-

en p -norm and γ -norm, respectively. Due to the convex nature

f the nuclear norm, it has been successfully used as a regular-

zer to solve the ill-posed HSI denoising problem. However, the nu-

lear norm-based and these nonconvex approximation-based HSI

enoising methods may face one essential limitation. That is, they

annot ignore the high computation cost of the singular value de-

omposition. This is mainly because they need to perform the sin-

ular value decomposition with high complexity in each iteration. 

Except for the globally low-rank structure, the locally piecewise

moothness is another important property of the HSIs. The total

https://doi.org/10.1016/j.sigpro.2020.107645
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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variation (TV) regularizer [12] , as a plausible tool for smoothness

preservation, has been widely applied in image denoising by

minimizing difference values among the neighboring pixels. For

an HSI cube, the smoothness property is not only limited in the

spatial domain, but also appeared in the spectral domain since the

distribution of difference values among the adjacent bands is very

similar [13] . 

This paper proposed a total variation-regularized blinear

factorization-based (BFTV) HSI denoising model which removes the

mixed noise from both spectral and spatial perspectives to recover

the intrinsic structures of the clean component from noisy HSIs.

For the clean HSI, BFTV factorizes the data matrix into two small

factor matrices to explore the globally spectral correlations (the

globally low-rank property). Unlike the nuclear norm-based HSI

denoising methods, the bilinear factorization can update two small

scale matrices to measure the low-rank property instead of cal-

culating the singular value decomposition. We solve the proposed

BFTV model based on the augmented Lagrange multiplier (ALM).

Comprehensive experiments on simulated and real HSIs are con-

ducted and validate the effectiveness of the proposed method over

several state-of-the-art low-rank-based approaches. The main con-

tributions are summarized as follows: 

• A novel total variation-regularized bilinear factorization model

(BFTV) is proposed for HSI denoising. BFTV not only exploits

the low-rank characteristic but also the local piecewise smooth-

ness property to better recover HSIs. 
• Different from the existing HSI denoising methods which used

the nuclear norm with coarse rank approximation, BFTV applies

the bilinear matrix factorization to replace the original nuclear

norm and make the singular value decomposition free. BFTV

utilizes l 1 -norm to detect the sparse noise including salt and

pepper noise, deadlines, and stripes. To explore the local piece-

wise smoothness property in the spatial and spectral domains,

BFTV integrates the tensor-based TV regularizer with the bilin-

ear factorization as a unified model. 
• An efficient algorithm is designed to solve the BFTV model

based on the augmented Lagrange method. Extensive experi-

ments on simulated and real-world HSI datasets demonstrate

the superiority of the proposed BFTV over several state-of-the-

art low-rank-based HSI denoising methods. 

The rest of this paper is organized as follows. Section 2 reviews

some related works including low-rank modeling and TV regular-

ization. The proposed model and the iterative algorithm are in-

troduced in Section 3 . Extensive experiments and results analy-

sis are reported in Section 4 . Finally, we conclude this paper in

Section 5 . 

2. Related works 

Considering that HSIs have globally low-rank structure and lo-

cally piecewise smoothness property, we briefly introduce related

works on low-rank modeling and TV regularization. 

Low-rank modeling refers to learn a low dimensional matrix

from the original high dimensional data. The existing approaches

to the low-rank approximation can be basically divided into the

rank minimization methods and matrix factorization ones. In the

rank minimization methods, the nuclear norm [14] was usually

applied to replace the rank function due to its convex advan-

tage [15] . To remove the mixed noises, many HSI denoising meth-

ods [3,16,17] incorporated the nuclear norm into l 1 -norm to adapt

gross corruptions and outlier scenarios. Besides minimizing rank

function, matrix factorization is another efficient way to exploit

low-rank property. In matrix factorization approaches, the matrix
 ∈ R m × n is decomposed into two factor matrices L = UV T , where

 ∈ R m × r and v ∈ R n × r . Then, we can obtain a low-rank ma-

rix L by restricting r to a relatively small constant based on the

athematical knowledge that rank (UV T ) ≤ min (rank (U) , rank (V )) .

o enhance the robustness of traditional factorization methods, the

ost typical way is to replace least square loss function with more

obust loss functions, such as Geman-McClure function [18] , which

ntroduces a weighted parameter to measure the contribution of

ach element. Xu et al. [19] used a low-rank matrix factorization

cheme combining with the logdet function to restore the clean

SIs. Following this idea, the study in [20] used the matrix fac-

orization and the bi-nuclear quasi-norm to measure the low rank

haracteristic of HSI. However, it overlooks the local structures of

SI. Recently, the deep convolutional neural network-based HSI de-

oising methods [21–23] have been proposed. For example, Chang

t al [21] . was the first time to use the fully convolutional neural

etwork to denoise HSI. It incorporated the residual learning, di-

ated convolution, and multichannel filtering into the network to

etter model the HSIs. Yuan et al. [22] developed to learn a nonlin-

ar end-to-end mapping between the noisy and clean HSIs with a

ombined spatialâspectral deep convolutional neural network. Al-

hough the aforementioned methods have achieved a great suc-

ess in removing complex noise, they need a large number of HSI

atasets to train the whole networks. 

Except for the global low-rank structure, the local piecewise

moothness is another major property for HSIs. TV regularizer

12] was proposed as a powerful smoothness estimation tool for

atural image denoising. Recently, many researches have focused

n combining both the low-rank property and piecewise smooth-

ess property together to recover clean HSIs. For instance, Gol-

abaee and Vandergheynst [24] firstly proposed to combine the

uclear norm and TV norm as one integrated convex function

nd achieved promising performance for HSIs restoration. Consid-

ring that the noise intensity in different bands is generally not

he same, a spectral spatial adaptive hyperspectral TV denoising

ethod was devised [25] . But this model considered only differ-

nt Gaussian noise distribution and stripe noise, which is not fully

ualified to deal with more complex noisy cases in HSIs. He et al.

17] developed a total variation-regularized low-rank matrix factor-

zation (LRTV) model which integrated the nuclear norm and TV

orm to remove the mixed noises. However, it may face two limi-

ations: (1) LRTV may suffer from high computation cost since the

uclear norm-based problem needs inevitably to perform the sin-

ular value decomposition, especially for large-scale HSIs; (2) LRTV

ay not take full use of the spectral structure correlation since the

otal variation was performed band-by-band. Therefore, removing

omplex mixed noise is still a research hotspot in the remote sens-

ng area. 

. HSI Denoising via TV-regularized bilinear factorization 

Many works have stated that the HSI data are inevitably con-

aminated by different kinds of noise including sparse noise, strips,

eadlines and Gaussian noise [3,16] . To well remove the mixed

oise in HSIs, we proposed the total variation-regularized bilinear

actorization (BFTV) model. Considering that the HSIs have two es-

ential characteristics, i.e. , the globally low-rank structure and lo-

ally piecewise smoothness property, we exploited the bilinear fac-

orization strategy [26,27] and the spatial-spectral total variation

egularizer to explore the above two characteristics, respectively.

ifferent from most of the existing HSI denoising methods which

dopted the nuclear norm to depict the low-rank property, BFTV

sed the bilinear factorization to factorize a large-scale HSI data

atrix into two smaller factor matrices, leading to the singular

alue decomposition-free nature. 
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.1. BFTV for HSI denoising 

A noisy HSI Y can be decomposed as three parts: the clean HSI

 , Gaussian noise G , and sparse noise S . The sparse noise usu-

lly includes deadlines, stripes, salt and pepper noise. Therefore,

he degradation model of an HSI can be formulated as 

 = L + S + G , (1) 

here all of them are of size M × N × B. M and N are the spatial

ize while B is the number of the spectral band. By converting

ach band matrix of HSIs into a column vector, we constitute a

asorati matrix Y ∈ R 

MN × B . Then the matrix form of Eq. (1) is

ormulated as: 

 = L + S + G . (2) 

It is an ill-posed problem to recover the clean HSI L from its

oisy observation Y . To overcome this issue, some priors are im-

osed. In this paper, we consider two intrinsic priors of HSIs, i.e.,

he globally low-rank property and locally piecewise smoothness.

ost of existing HSI denoising methods that utilized the nuclear

orm to estimate the rank constraint of clean HSIs. However, when

he spectral images are corrupted heavy Gaussian noise which ef-

ects data identically and independently, the rank estimated by

he nuclear norm may not be a low value. Besides, the singular

alue decomposition is executed by the nuclear norm at each iter-

tion, while the computational cost of SVD is high, which makes

t impracticable to handle the real HSIs processing. The nuclear

orm treated each singular value equally. However, as well known,

he larger singular values usually contain the main information of

he image while the smaller values may be controlled by noise.

herefore, the nuclear norm may not a close approximation [3,11] .

o solve this issue, we exploit the bilinear factorization strategy

o measure the low-rankness of clean HSIs and avoid this high

omputational trouble. Given any matrix L ∈ R 

m × n , the following

olds: 

 L ‖ ∗ = min 

U , V , L= UV 

1 

2 

(‖ U ‖ 

2 
F + ‖ V ‖ 

2 
F ) , (3)

here two small scale matrices U and V are of size m × r and

 × n , respectively. Thus, we propose the following bilinear factor-

zation formulation to recover the clean HSI: 

min 

 , U , V , S 

1 

2 

(‖ U ‖ 

2 
F + ‖ V ‖ 

2 
F ) + λ‖ S ‖ 1 

.t. Y = L + S , L = U V . 

(4) 

Although the bilinear factorization formulation characterizes

he low-rankness of the clean HSI structure, it only separates a

ertain extent of Gaussian noise since the l 1 -norm mainly detects

ixture sparse noise. Another extreme noisy condition is assumed

o be fixed sparse noise. For example, each spectral band is con-

aminated by the same deadlines, which is located at the identi-

al spatial position as well. The aforementioned bilinear factoriza-

ion model will treat these deadlines as a part of the clean HSI

omponent and fail to remove the sparse noise. Thus, except for

he globally low-rank structures, the locally piecewise smoothness

roperty should be well explored. To preserve the edge informa-

ion and smoothness details from spatial and spectral domains si-

ultaneously, we introduce the following tensor-based TV regular-

zation [28] : 

 L ‖ SST V = 

∑ 

i, j,k 

| l i, j,k − l i, j,k −1 | + | l i, j,k − l i, j−1 ,k | + | l i, j,k − l i −1 , j,k | , 

(5) 

here l i,j,k denotes the entry of L located at the position of ( i, j, k ).

his tensor-based TV norm can further remove Gaussian noise and

estore image details from both spatial and spectral domains. 
By combine the bilinear factorization model (4) and the tensor-

ased TV regularization (5) together into one unifed model, the

roposed BFTV can be finally formulated as follows: 

min 

 , U , V , S 

1 

2 

(‖ U ‖ 

2 
F + ‖ V ‖ 

2 
F ) + λ1 ‖ S ‖ 1 + λ2 ‖ L ‖ SST V 

.t. Y = L + S , L = U V , 

(6) 

here λ1 and λ2 are two non-negative parameters. The first term

f Eq. (6) is the bilinear factorization which is to explore the low-

ankness of clean HSIs. The second term of Eq. (6) is the l 1 norm to

eparate the sparse noise including deadlines, stripes and salt and

epper noise. The last term of Eq. (6) is the tensor-based TV, which

s used to preserve the locally piecewise smoothness of clean HSIs

rom the spatial and spectral domains. 

.2. ALM algorithm for BFTV optimization 

It is easy to see that the objective function of Eq. (6) is coupled

ith respect to L since we impose the low-rankness and piecewise

moothness on the clean HSI. Therefore, we solve Eq. (6) by using

LM method [29] . First, we rewrite the constrained optimization

q. (6) by introducing an auxiliary variable M : 

min 

 , U , V , S , M 

1 

2 

(‖ U ‖ 

2 
F + ‖ V ‖ 

2 
F ) + λ1 ‖ S ‖ 1 + λ2 ‖ M ‖ 1 

.t. Y = L + S , L = U V , M = D ( L ) . 
(7) 

here D (·) = [ D h (·) ; D v (·) ; D t (·)] represents a three-dimensional

perator, which is utilized to calculate differences between the

eighboring pixels along three dimensions respectively. The corre-

ponding augmented Lagrangian function of Eq. (7) is defined as

ollows: 

( U , V , S , L , M ; �1 , �2 , �3 ) = 

1 
2 
(‖ U ‖ 

2 
F + ‖ V ‖ 

2 
F ) + λ1 ‖ S ‖ 1 

+ λ2 ‖ M ‖ 1 + 

ρ
2 
(‖ Y − L − S + 

�1 

ρ ‖ 

2 
F + ‖ L − U V + 

�2 

ρ ‖ 

2 
F 

+ ‖ D ( L ) − M + 

�3 

ρ ‖ 

2 
F ) 

(8) 

here ρ > 0 denotes the penalty parameter, �1 , �2 and �3 are

he Lagrange multipliers related to three different constraints Y =
 + S , L = U V , and M = D ( L ) . Eq. (8) can be decomposed into the

ollowing sub-problems. 

(1) U and V : For the bilinear factor matrices minimization, we

xtract the terms involving U and V and obtain the following equa-

ions: 

 

(k +1) = arg min U F( U , V 

(k ) 
, S (k ) 

, M 

(k ) , L (k ) ; �(k ) 
1 

, �(k ) 
2 

, �(k ) 
3 

) 

= arg min U 
1 
2 
‖ U ‖ 

2 
F + 

ρ(k ) 

2 
‖ U V 

(k ) − ( L (k ) + 

�(k ) 
2 

ρ(k ) ) ‖ 

2 
F , 

(9) 

 

(k +1) = arg min V F( U 

(k +1) 
, V , S (k ) 

, M 

(k ) , L (k ) ;�(k ) 
1 

, �(k ) 
2 

, �(k ) 
3 

) 

= arg min V 
1 
2 
‖ V ‖ 

2 
F + 

ρ(k ) 

2 
‖ U 

(k +1) V − ( L (k ) + 

�(k ) 
2 

ρ(k ) ) ‖ 

2 
F . 

(10) 

y setting the derivative of Eqs. (9) and (10) with respect to U and

 to zero, respectively, we deduce their closed-form solutions as

ollows: 

 

(k +1) = (ρ(k ) L (k ) + �(k ) 
2 

)( V 

(k ) ) T (ρ(k ) V 

(k ) ( V 

(k ) ) T + I ) −1 , (11)

 

(k +1) = ( I + ρ(k ) ( U 

(k +1) ) T U 

(k +1) ) −1 [( U 

(k +1) ) T (ρ(k ) L (k ) + �(k ) 
2 

)] . 

(12) 

(2) S : For the sparse noise removal, we extract the terms in-

olving S and obtain the following equation: 

 

(k +1) = arg min S F( U 

(k +1) 
, V 

(k +1) 
, S , M 

(k ) , L (k ) ; �(k ) 
1 

, �(k ) 
2 

, �(k ) 
3 

) 

= arg min S 
λ1 

ρ(k ) ‖ S ‖ 1 + 

1 
2 
‖ S − ( Y − L (k) + 

�(k ) 
1 

ρ(k ) ) ‖ 

2 
F . 

(13) 
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Algorithm 1 BFTV. 

Input: The noisy HSI Y , desired rank r, the regularization param- 

eters λ1 and λ2 , and the stopping criteria ε
Output: Desired clean image L 

1: Initialize U 

0 = V 

0 = S 0 = M 

0 = L 0 = 0 ; 

�0 
1 

= �0 
2 

= �0 
3 

= 0 ; ρ0 = 10 −3 , ρmax = 10 6 , β = 1 . 1 and k = 0 

2: Repeat until convergence 

Update U 

(k+1) , V 

(k+1) , S (k+1) , M 

(k+1) , L (k+1) ;�(k +1) 
1 

, �(k +1) 
2 

, 

�(k +1) 
3 

via (11), (12), (14), (16), (19), and (20) iteratively 

Update the parameter ρ := min { βρ, ρmax } 
Check the convergence condition 

max 

⎧ ⎨ 

⎩ 

‖ Y − L (k +1) − S (k +1) ‖ ∞ 

‖ L (k +1) − U 

(k +1) V 

(k +1) ‖ ∞ 

‖ M 

(k +1) − D ( L 

(k +1) ‖ ∞ 

⎫ ⎬ 

⎭ 

≤ ε, (21) 
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Different from Eqs. (9) and (10) which are composed of two differ-

ent Frobenius norms, the Eq. (13) consists of l 1 -norm and Frobe-

nius norm simultaneously. The solution of S [30] is: 

S (k +1) = sign ( B ) . ∗ max {| B | − λ1 /ρk , 0 } . (14)

(3) M : For the spatial-spectral smoothness reservation, we ex-

tract the terms involving M from Eq. (8) and obtain the following

equation: 

M 

(k +1) = arg min M 

F( U 

(k +1) 
, V 

(k +1) 
, S (k +1) 

, M , L (k) ; �(k ) 
1 

, �(k ) 
2 

, �(k ) 
3 

= arg min M 

λ2 

ρ(k ) ‖ M ‖ 1 + 

1 
2 
‖ M − ( D ( L 

(k ) ) + 

�(k ) 
3 

ρ(k ) ) ‖ 2 F . 

(15)

Similar to the sparse noise removal, the solution can be obtained

as follows: 

M 

(k +1) = sign ( P ) . ∗ max {| P | − λ2 /ρk , 0 } , (16)

where P = D ( L 

(k ) ) + 

�(k ) 
3 

ρ(k ) . 

(4) L : For our desired HSI, we extract the terms involving L as

follows: 

L (k +1) = arg min L F( U 

(k +1) 
, V 

(k +1) 
, S (k +1) 

, M 

(k +1) , L ; �(k ) 
1 

, �(k ) 
2 

, �(k ) 
3 

) 

= arg min L ‖ L − ( Y − S (k +1) + 

�(k ) 
1 

ρ(k ) ) ‖ 2 F + ‖ L 
−( U 

(k +1) V 

(k +1) − �(k ) 
2 

ρ(k ) ) ‖ 2 F + ‖ D ( L ) − ( M 

(k +1) − �(k ) 
3 

ρ(k ) ) ‖ 2 F . 

(17)

One can see that these three terms of Eq. (17) are convex with re-

spect to variable L . Therefore, we set the derivative of Eq. (17) with

respect to L to zero and yield: 

L − ( Y − S (k +1) + 

�(k ) 
1 

ρ(k ) ) + L − ( U 

(k +1) V 

(k +1) − �(k ) 
2 

ρ(k ) ) 

+ D 

∗( D ( L ) − ( M 

(k +1) − �(k ) 
3 

ρ(k ) )) = 0 . 
(18)

Finally, we obtain the closed-form solution as follows: 

L (k +1) = ( E + D 

∗( M 

(k +1) − �(k ) 
3 

/ρ(k ) ))(2 I + D 

∗D ) −1 . (19)

where E = Y − S (k +1) + 

�(k ) 
1 

−�(k ) 
2 

ρ(k ) + U 

(k +1) V 

(k +1) . 

(4) �1 , �2 and �3 : Three Lagrange multipliers are updated as

�(k +1) 
1 

= �(k ) 
1 

+ ρ(k ) 
(
Y − L (k +1) − S (k +1) 

)
;

�(k +1) 
2 

= �(k ) 
2 

+ ρ(k ) 
(
L (k +1) − U 

(k +1) V 

(k +1) 
)
;

�(k +1) 
3 

= �(k ) 
3 

+ ρ(k ) 
(
M 

(k +1) − D ( L 

(k +1) ) 
)
. 

(20)

Specifically, Algorithm 1 presents the BFTV solver. In

Algorithm 1 , the inputs contain the noisy HSI Y ∈ R 

MN × B ,

desired rank r , the regularization parameters λ1 and λ2 , and the

stopping criteria ε. The output is the restored clean image L ,

which is the same size as Y . The ALM algorithm has been proven

[29] that it will converge to the exact optimal solution iteratively

and has been successfully applied to various applications. 

4. Experimental results 

To illustrate the effectiveness of the proposed BFTV model

for HSIs denoising, we conducted extensive experiments on one

simulated and one real-world HSIs. For a comprehensive com-

parison, the proposed BFTV is compared with three state-of-the-

art HSI denoising methods i.e. , the noise-adjusted iterative low-

rank matrix approximation (NAILRMA) model [16] , the low-rank

matrix recovery (LRMR) model [2] with Go Decomposition algo-

rithm, and total-variation-regularized low-rank matrix factorization

(LRTV) [17] . The differences and connections between the proposed
FTV and all competitors are described as follows: (1) To estab-

ish the low-rank property, LRMR, NAILRMA, and LRTV utilized

he bilateral random projection-based low-rank approximation, the

andomized singular value decomposition, and the nuclear norm,

espectively. While the proposed BFTV used the bilinear factor-

zation to make the singular value decomposition free. (2) LRMR

nd NAILRMA considered only the globally low-rank property, re-

ulting in the loss of the locally piecewise smoothness of clean

SIs. Although LRTV incorporated the hyper total variation into

he low-rank matrix approximation model, it ignored the piece-

ise smoothness among the spectral dimension of HSIs since it

erformed the hyper total variation in a band-by-band way. The

roposed BFTV not only considers the locally piecewise smooth-

ess among the spatial dimension, but also among the spectral di-

ension. 

.1. Simulated data experiments 

Following the experimental setting in LRTV, we used the syn-

hetic data collected by using the Indian Pines dataset as the test

ata. This synthetic HSI dataset comprises 224 spectral bands with

he wavelength ranging from 0.4 μm to 2.5 μm and the size of each

and is 145 × 145 pixels. The reflectance values of all the vox-

ls in the synthetic HSI were linearly mapped to [0, 1]. To simu-

ate the real situation, different types of noise were added into the

ynthetic HSI. These specific details for five scenarios are listed as

ollows: 

• Scenario 1) In this scenario, there were two types of noise in-

cluding Gaussian noise and deadlines. We added Gaussian noise

with zero mean and variance 0.1 to each spectral band. Be-

sides, we also added deadlines to several selected bands 91–

130. The number of deadlines was randomly changing from 3 to

10. Meanwhile, the width of each deadline was randomly fixed

from 1 to 3 pixels. 
• Scenario 2) In this scenario, the mixed noise including Gaus-

sian noise with zero mean and variance 0.075 and impulse

noise were added into different bands. The ratio of impulse

noise is equal to 0.15. 
• Scenario 3) In this scenario, there were three types of noise in-

volving Gaussian noise, deadlines and impulse noise. We com-

bined Scenario 1) and Scenario 2) together to generate the

mixed noise. To be specific, the variance of Gaussian noise was

equal to 0.1, the ratio of impulse noise was set to 0.15, and the

deadlines was added to the same bands as Scenario 1) . 
• Scenario 4) In this scenario, there were three types of noise

including Gaussian noise, deadlines and impulse noise. How-
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Fig. 1. PSNR values of different denoising methods in each band: (a) Scenario 1) (b) Scenario 2) (c) Scenario 3) (d) Scenario 4) (e) Scenario 5) . 

Fig. 2. SSIM values of different denoising methods in each band: Scenario 1) (b) Scenario 2) (c) Scenario 3) (d) Scenario 4) (e) Scenario 5) . 

 

 

 

 

 

 

 

 

m  

n  

a  

t  

d  

S  

d

P  

S

w  

t  

g  

o

s  

t  

f  

s  

a  

M  

a  

m

 

b  

F  

i  

t  

c  

M  

n  

I  

a  

o  

0  

a  

s  

L  

n  
ever, compared with Scenario 3) , this scenario was more com-

plicated because the noise intensity in different bands was ran-

domly changed. The variance of Gaussian noise was generated

from 0 to 0.2. Besides, the ratio of impulse noise was assigned

from 0 to 0.2 randomly. 
• Scenario 5) In this scenario, there were four kinds of noise con-

taining Gaussian noise, deadlines, impulse noise and stripes. Ex-

cept for noise as in Scenario 4) , 20–40 stripes were added into

bands 161–190. 

1) Quantitative Criteria: To evaluate the experimental results

ore precisely, three quantitative indexes including peak signal-to-

oise ratio (PSNR), structural similarity index (SSIM) and spectral

ngle measure (SAM) [31] are selected as the performance criteria

o analyze the results of five scenarios. PSNR and SSIM measure the

ifference between the groundtruth and the denoised HSI, while

AM aims to measure the spectral distortion. PSNR and SSIM are

efined as follows: 

 SNR i = 10 ∗ log 10 
MN ∑ M 

x =1 

∑ N 
y =1 [ ̂  μi (x, y ) − μi (x, y )] 2 

(22)

SIM i = 

(2 μμi 
μ ˆ μi 

+ C 1 )(2 σμi 
μ ˆ μi 

+ C 2 )(σμi ̂  μi 
+ C 3 ) 

( μμi 
2 + μ ˆ μi 

2 + C 1 )( σμi 
2 + σ ˆ μi 

2 + C 2 )( σμi 
σ ˆ μi 

+ C 3 ) 
(23) 

here M and N indicate the height and width of each spec-

ral band image, while μi and ˆ μi denote the i th bands of the
Table 1 

Quantitative evaluation of different HSI denoising app

Simulated scenario Evaluation criteria Noise 

Scenario1) MPSNR (dB) 19.34 

MSSIM 0.37 

MSAM 0.2152 

Scenario2) MPSNR (dB) 13.02 

MSSIM 0.19 

MSAM 0.4145 

Scenario3) MPSNR (dB) 12.72 

MSSIM 0.16 

MSAM 0.4245 

Scenario4) MPSNR (dB) 13.78 

MSSIM 0.2 

MSAM 0.4039 

Scenario5) MPSNR (dB) 13.54 

MSSIM 0.2 

MSAM 0.4039 
roundtruth and the denoised image. μμi 
and μ ˆ μi 

are the means

f μi and ˆ μi respectively. Besides, σμi 
and σ ˆ μi 

are their corre- 

ponding variances, and σμi ̂  μi 
is the covariance. C 1 , C 2 and C 3 in

he Eq (23) are constants utilized to maintain the stability of dif-

erent terms. B is the number of total spectral bands. There are 224

pectral bands of the synthetic data, thus we computed the aver-

ge values of PSNR, SSIM, and SAM denoted as MPSNR, MSSIM, and

SAM respectively. The higher values of PSNR and SSIM we get,

nd the smaller SAM is, the better performance of HSI denoising

ethod is. 

First, we report the PSNR and SSIM values of each spectral

and to evaluate the performance of different denoising models in

igs. 1 and 2 . One can see that all methods have achieved promis-

ng denoising performance for all scenarios. Generally speaking,

he PSNR and SSIM values of BFTV are higher than those of all

ompeting methods in most of all bands. MPSNR, MSSIM, and

SAM values of all methods are shown in Table 1 in the five sce-

arios. In each row of this table, the best results are tagged in bold.

t can be seen that the proposed BFTV model performs best over

nother three popular algorithms in all scenarios. Specifically, BFTV

utperforms the best peer algorithm LRTV by the improvement of

.86 dB in Scenario 5) with respect to MPSNR. In addition, BFTV

chieves the smallest MSAM value in all scenarios. This demon-

trates that the results of BFTV are the closest to the groundtruth.

RTV and the proposed BFTV methods have achieved better de-

oising performance than LRMR and NAILRMA. The reason is that
roaches in different simulated scenarios. 

LRMR NAILRMA LRTV BFTV 

35.89 35.30 35.56 38.07 

0.91 0.92 0.98 0.98 

0.0315 0.0566 0.0301 0.0214 

35.38 27.66 35.73 38.90 

0.90 0.82 0.98 0.98 

0.0300 0.0694 0.0283 0.0188 

35.64 34.99 35.69 37.89 

0.91 0.92 0.98 0.98 

0.0333 0.0356 0.0290 0.0232 

34.37 34.78 35.06 36.16 

0.89 0.91 0.98 0.97 

0.0425 0.359 0.0311 0.0266 

32.42 34.78 35.05 35.91 

0.87 0.91 0.98 0.97 

0.0435 0.0338 0.0316 0.0276 
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Fig. 3. Denoised results: the row from top to bottom Scenario 1) to Scenario 5) , (a) Original image (b) Noisy image (c) LRMR (d) NAILRMA (e) LRTV (f) BFTV. 
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LRT V and BFT V both integrate the total variation regularizer with

the low-rank matrix approximation model to describe another es-

sential HSI characteristic. 

2) Visual Criteria: We also give the visual comparison among

all methods by selecting the representative band of each scenario.

The first row of Fig. 3 shows the HSI denoising results of band 120

in Scenario1) . It is obvious that all HSI denoising methods can re-

move the Gaussian noise effectively. For the LRMR and NAILRMA

methods, there still remain some deadlines in the right area of

images. However, the proposed BFTV provides the more satisfy-

ing results over its competitors. Fig. 3 present the visual compari-

son results of the remaining four scenarios. From these figures, we

can deduce that all of these HSI denoising models can remove the

mixed noise to a certain extent and they can suppress the Gaussian

noise component effectively. However, in the Scenario 2, Scenario

4 and Scenario 5 , we can notice that the NAILRMA method still

remains the mixed noise to a certain extent. The proposed BFTV

model outperforms the other three popular HSI denoising meth-
ods. s  
.2. Real data experiments 

One real-world HSI is used to investigate the performance of

he proposed BFTV when handling the real noisy scenario. The HY-

ICR urban images are selected as the testing data. Different from

16] which discarded some bands with heavy noises, we adopt all

10 bands to evaluate the performance of LRMR, NAILRMA, LRTV

nd the proposed LRTV. The size of the HYDICR urban images is

07 × 307 × 210. 

The denoising results of all methods on the HYDICE urban data

re shown in Fig. 4 , in which the first row corresponds to the

09th band while the second row is the 206th band. The HYDICE

rban data are corrupted by Gaussian noise, horizontal stripes, and

eadlines as shown in the first column of Fig. 4 . Generally, the pro-

osed BFTV has achieved the best visual performance. Compared

o all the competitors, BFTV removes most of the horizontal stripes

s shown in the first row of Fig. 4 . For the 206th band, LRMR,

AILRMA and LRTV still cannot remove the horizontal stripes as

hown in the highlighted red rectangle in Fig. 4 . These observa-
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Fig. 4. Denoised results of HYDICE urban data set) : (a) Original bands 109 and 206 (b) LRMR (c) NAILRMA (d) LRTV (e) BFTV. 

Fig. 5. PSNR and SSIM values of BFTV with different combinations of λ1 and λ2 on Scenario 6 . 

Fig. 6. Error versus iteration of BFTV on Scenario 5 (Left) and Scenario 6 (Right). 

t  
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v  

λ  

P

a  

B

ions further demonstrate the high efficiency of the proposed BFTV

n the real noisy scenario. 

.3. Discussion 

In this section, we discuss the parameter selection and empiri-

al convergence of the proposed BFTV. 
1) Parameter Selection: Two parameters λ1 and λ2 are in-

olved in the proposed BFTV. In all experiments, we select λ1 and

2 from the same candidates [0.1, 0.5, 1, 5, 10, 50]. Fig. 5 reports the

SNR and SSIM values of BFTV with different combinations of λ1 

nd λ2 on Scenario 6 . One can see that when λ1 = 50 and λ2 = 10 ,

FTV achieves the best denoising performance. 
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Table 2 

Running time (in seconds) on all databases. 

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 HYDICE urban 

LRMR 52.93 45.89 43.28 44.58 46.52 353.28 

NAILRMA 32.98 35.93 33.64 36.75 34.56 188.32 

LRTV 41.60 45.77 44.64 46.90 45.62 202.79 

BFTV 54.00 55.57 60.79 54.12 55.77 262.33 
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2) Empirical Convergence: 

To investigate the empirical convergence of BFTV, we show the

error of BFTV with respect to iteration in Fig. 6 , where the y -axis

is the error defined in Eq. (21). It is easy to see that BFTV will

converge after 25 iterations. 

3) Running Time: In this section, we aim to compare the run-

ning time of all HSI denoising methods. All methods are conducted

in Matlab R2018 at the server with Intel(R) CPU E3-1241 3.50Hz

with 16GB memory. Table 2 reports the running time of all meth-

ods on the both simulated and real HSIs. From Table 2 , we can ob-

serve that NAILRMA is the fastest method. The proposed BFTV has

competitive running time with LRMR on the five scenarios, while

costs less time than LRMR on the real HYDICE urban data. Because

BFTV exploits the globally low-rank property and locally piecewise

smoothness, the running time of BFTV could be longer than that

of the other methods. 

5. Conclusion 

In this paper, we proposed a novel hyperspectral image de-

noising method, called total variation-regularized bilinear factor-

ization method (BFTV). It took two intrinsic characteristics of hy-

perspectral images, i.e., the globally low-rank property and locally

piecewise smoothness into consideration. To solve the proposed

model, we designed an efficient algorithm based on the augmented

Lagrangian multiplier. Expensive results as well as the empirical

convergence analysis have demonstrated the superior performance

of BFTV over three state-of-the-art hyperspectral image denoising

methods. There still has room for the performance improvement.

One possible solution is that we may consider the tensor factor-

ization strategy insteowad of the bilinear factorization to explore

the low-rankness. 
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